拆解分析运动感应 LED 小夜灯

在某鱼以很低的包邮价淘了两个运动感应LED小夜灯。拆解看看里面的电路组成是什么样的。

简约的包装盒子。只印着Motion Sensor LED Light。

打开包装盒子后,有三样东西。LED灯本体、USB充电线、安装座。安装座可以贴,也可以螺丝安装,灯的本体内有磁铁,可以很方便的在安装座吸上或取下。

这个小夜灯有两种使用模式,可用开关选择,“ON”就是常开模式,开启后会一直常亮,“AUTO”就是自动模式,开启后,人体红外热释电运动传感器工作,感应到人体动作后,灯亮,一段时间后会自动熄灯。

拆卸掉几颗螺丝后,就可以拆下整个电路板。PCB为单层板,贴片元件、LED和传感器布在顶层上。模式开关和锂电池安装在背面。

锂电池为了个3.7V的小电池。用泡沫胶条贴在PCB底层。

PCB中央的是人体红外热释电运动传感器,周围布着六颗暖光LED,封装为SMD2835。传感器下方为一个光敏电阻,用于感应环境光线,”AUTO”模式下,只有环境光线够暗,运动传感器才会起作用。

从USB端口过来是U1,芯片上的Mark标号为H57,该芯片连着两个状态LED以及电池,应该就是TP4057锂离子电池充电器芯片,查其芯片手册,可以找到引脚定义和对应的典型电路图。

Q1三极管的Mark为Y1,在开关拨到”ON”模式时,电池正极通过开关后,经过PCB上标为“R-ON”的3K电阻,再到Q1三极管的B极,这时三极管饱和导通,LED被点亮。那这个Q1肯定就是NPN的SS8050。耐压25V,电流1.5A。当开关拨到”AUTO”时,该三极管B极会由主控芯片接管。

主控芯片为BISS0001,为一个低功耗人体红外线感应信号处理器,工作电压可以在2-6V,内设延迟时间定时器和封锁时间定时器,有双向鉴幅器可有效抑制干扰,可用于多种传感器和延时控制器。这个LED灯的主控部分基本上就是按典型应用原理图修改而来。芯片主要完成传感器和光敏电阻的信号采样、延时时间控制、控制信号输出。控制信号经由Q1三极管SS8050放大后驱动LED工作。

电池接口附近的U3,SMD Mark为8205,是一个双N沟道的MOSFET芯片,耐压20V,5A电流。U4,Mark标号为DW01B,是一个锂电池保护芯片,有过充过放等保护功能。U3和U4一起组成锂电池保护电路。基本原理图可以参考其数据手册中的典型应用电路图。

经过这次拆解,可以了解到这款产品的电路主要是由锂电池保护电路、锂电池充电电路,以及人体红外线感应信号处理电路,三大部分组成,产品小巧、使用简单但也充分考虑到锂电池使用的安全性。

20230514

街机风格的PC开关

工作用电脑开不了机,检查为电源开关损坏了,原机箱上配的开关,质量真不行。不想购买代换元件,找了半天没找到自复位的方形小按键开关,想到之前在某鱼淘到的两包街机用的圆形大按钮,质量和手感都很不错,就用它吧,搞个街机风格的开机开关。按钮直径为24mm,拆下机箱挡板后,才想起自己没有这么大的扩孔钻头,好吧,3D打印一个档板好了。

花十分钟用FreeCAD画个档板,Cura切片后,花一个多小时打印。

模型放这,有需要可以下载。点这下载–》 PC

打印完成,尺寸刚好。

焊接,套上热缩套管,完工。

2023/4/15

电路分析5-简易LED恒流电路

驱动小功率LED时,电流不会太大,如上图使用限流电阻稳定电流,足够应用于大多数场景的,一旦LED功率上去了,RL电阻体积就会变大,同时因为限流电阻无法实现自身的调节,在电源波动等情况下,会造成明显的亮度变化。比如一个3.3V 120mA的LED,用6V电压驱动,这个电路的RL就应该是(6V-3.3V)/120mA=22.5欧  功率则是2.7Vx120mA=0.324W,这个功率值大于常用的1/4W(250mW)电阻功率。所连接的LED功率越大,RL要求的功率也就越大,体积也就越大。让电源尽可能接近LED的压降值,是可以减少限流电阻功率要求。

为解决这些问题,人们发明了很多用于恒流的电路和芯片,下图是一个低成本、简单的恒流电路。工作电压受限于NMOS的GS极电压以及NPN管工作电压,工作电压范围可以定在2-18V,最高工作电流则要看NMOS可以承载的电流,NMOS也可以用三极管取代。工作原理大致如下,VCC通过R1加载到NMOS的G极,NMOS导通,当电流流过RL时,RL两端会产生一个电压,这个电压的大小和电流以及RL阻值相关的,由于Q1的存在,RL流过的电流大到一定值时,两端电压达到0.6V后(根据元件参数不一样这个值会在0.5-0.7之间,这里选定0.6),Q1就会导通,Q1的Ib放大后,结合R1会形成分压加载到Q2的G极控制NMOS阻止电流的增加。所以VCC=0.6+Vds+Vled,流过LED的电流则可以由0.6V/RL来计算得出。当某些原因,如温度上升导致流过LED的电流变大时,流经Q1的Ib也会变大,R1得到的分压也会变大,而Q2的G极电压则会变小,G极电压变小NMOS受控内阻变大,又导致LED电流变小,从而使电流恒定。LED电流变小时,变化的量则是相反了。当电源电压改变时,会导致Q2的DS极电压也变化,Q1的Ib也相应变化,导致不同的电源电压时电流也是保持基本不变。

如果手头上有NMOS管IRL510,晶体管S8050,电源电压5V,需要驱动一个压降约为2.3V左右,电流最大300ma的LED,试计算各参数值。先是设定LED电流为270mA,那么RL=0.6V/270mA,RL的计算值为2.2欧。R1的值太小的话,会增加电路的功耗,太大会RL的电压变小,所以这里选择为1K。这种电路的功耗比较大,多余的能耗会消耗在NMOS和RL上,NMOS的功耗(5V-2.3V-0.6V)x270mA=0.567W,0.6W左右可以不需要安装额外的散热器,RL的功耗0.6Vx270mA=0.162W,RL至少要选用1/4W或以上的型号,最后得到的电路如下图。

使用面包板搭个电路,电路工作正常。测量电流、电压值如下图所示。从测量值可以看出实际的实验值和计算值基本吻合的。从NMOS的D极电压值也可以看出,这种电路的能耗比较大,在这个实验中5V的电源情况下,Q2和LR会浪费掉一半的能量,并转换成热量散发。所以在使用这种电路时,电源的值最好能尽可能的接近于发光二极管组件的压降,同时要注意Q2或RL的功率和散热问题。

2022/10/25 晚